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Abstract. Self-consistent solutions for the electrostatic and electrochemical potentials are 
presented for idealised systems of perfect conductors connected to a perfect battery. A 
variety of phenomena are observed including electron transport against the gradient of the 
electrochemical potential. 

1. Introduction 

There has recently been a significant increase in interest in the subject of quantum 
transport following the successful fabrication of devices that show quantised con- 
ductances attributable to quantum transport (van Wees et af 1988, Wharam et a1 1988b). 
The modelling of such devices is a complicated theoretical problem which involves the 
self-consistent solution of the Schrodinger equation of the device in the non-equilibrium 
current-carrying state. The devices studied experimentally contain narrow quasi-one- 
dimensional constrictions. It is straightforward to show that the conductance of such 
systems could be quantised. The electrons in a quasi-one-dimensional conductor occupy 
a set of sub-bands due to quantisation of the electronic states in the transverse directions 
but the electronic states are free-electron-like in the longitudinal direction. If there is 
no scattering of electrons between sub-bands the electrons in each sub-band can be 
considered as a one-dimensional electron gas. In a one-dimensional conductor the 
density of states at energy E for electrons propagating in one direction is 

P ( E )  = 2(L/2n) dk/de (1) 
where L is the length of the conductor and k is the wavenumber of the electronic states. 
The group velocity of the electrons that have energy E is 

U(&) = (l/h) d E/d k.  (2) 
If all the electronic states propagating to the right in the energy range between E and 

E + A E  are occupied and all the states propagating to the left are unoccupied the current 
carried by the electrons in the energy range A E  is 

I = (e /L)  P ( E ) V ( E )  A E  = (2e /h)  A E  (3) 
which is independent of E .  If the range of energies over which all the right-propagating 
electronic states are occupied and the left-propagating states are unoccupied were equal 
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to eV, where Vis the voltage across the conductor, the conductance of the system would 
be 

G = I/V = 2e2/h. (4) 
This result sugests that each occupied sub-band in a quasi-one-dimensional conductor 

should have a quantised conductance, in which case the conductance of the devices 
studied experimentally would be 

G = (2e2/h)n ( 5 )  
where n is the number of occupied sub-bands in the narrow constrictions. 

The conductances of the systems containing narrow constrictions that have been 
studied experimentally are found to be quantised in agreement with ( 5 ) .  This suggests 
that the simple model described above accurately describes these systems. However, 
there are a number of difficulties in relating (5) to the experimental results. In the devices 
studied experimentally electrons move from a wide region of the device into the quasi- 
one-dimensional constriction and then back into a second wide region of the device. The 
model presented above does not take account of the effect of this variation in the 
transverse width of the device. Furthermore, there is no obvious reason for which the 
range of energies of the current-carrying states in the constriction should be related to a 
voltage measured between probes positioned away from the constriction. The con- 
ductance measured between probes positioned away from the constriction could be 
calculated using the Landauer formula for the conductance. Application of the Landauer 
multi-channel conductance formula (Landauer 1985) 

G = (2e2/h) Tr(tt t) (6) 
where t is the transmission matrix, predicts a quantised conductance for a quasi-one- 
dimensional constriction provided that the magnitude of the transmission coefficient for 
each channel is unity. Landauer has criticised the use of this formula because it does not 
take account of self-consistency (Landauer 1988) and he has shown that an approxi- 
mately quantised conductance is predicted from the following conductance formula 
which does take self-consistency into account (Buttiker et a1 1985): 

where the sum is over all incident channels and v,, RI and TI are the longitudinal velocity, 
reflection coefficient and transmission coefficient for channel i. 

The Landauer formulae describe the conductance measured between reservoirs 
positioned well away from the constriction and they should not be used to predict the 
conductances that will be measured between arbitrary points in the system. The current 
flow through a quantum transport device depends on the electrostatic and elec- 
trochemical potentials at all points in the system. Understanding the form of these 
potentials is essential for modelling quantum transport devices and for interpreting 
measurements of potential differences and conductances made on such devices. It is the 
purpose of this paper to consider the form of these potentials in a number of ideal 
systems. The examples studied have been chosen to be as simple as possible. All 
the complexities involved in theoretical treatments of quantum transport have been 
deliberately avoided although some of the complications that occur in real systems 
will be briefly described. In the following section the definitions of electrostatic and 
electrochemical potentials will be discussed and the concepts of perfect batteries and 
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ideal conductors will be introduced. The electrostatic and electrochemical potentials in 
systems containing these idealised circuit elements will be presented in Q 3. 

2. Electrochemical and electrostatic potentials, perfect batteries and ideal conductors 

The difference between electrostatic and electrochemical potentials and the difficulties 
involved in the measurement of these potentials have been discussed by a number 
of authors (see Engquist and Anderson (1981), and Landauer (1988) and references 
therein). Only the briefest discussion of these potentials will be presented here to provide 
the working definitions for the potentials used in this paper. The measurement process 
will not be considered. The potentials in a real system are determined by current 
conservation and by self-consistency between the potentials and the charge density. 
Whether any instrument can accurately and non-destructively measure these potentials 
will not be addressed here. 

The electrostatic potential in a system is most easily detected by measuring the 
absolute energy of the bottom of a particular band or of a particular atomic core state. 
The difference between the absolute energies of either of these quantities measured at 
two points in space is equal to the change in the electrostatic potential between the 
points. The electrochemical potential is more difficult to define since it can be precisely 
defined only for a system in equilibrium. If a material carries a current the electrons are 
not in equilibrium and so an electrochemical potential cannot be uniquely defined. One 
way around this problem is to assume that the carriers moving in a particular direction 
are in equilibrium in which case a different electrochemical potential could be assigned to 
the carriers moving in each direction. Experimentally a difference in the electrochemical 
potentials at two points is measured by connecting a voltmeter between the points. The 
magnitude of the measured electrochemical potential difference is then given by a 
weighted average of the occupancy of the electronic energy levels where the weighting 
factor depends on the details of the measuring instrument. In this paper the elec- 
trochemical potential at a point will be taken to be the absolute position of the Fermi 
level that would produce the electron number density at that point. This electrochemical 
potential would correspond to a measuring instrument for which the weighting factor is 
a constant. Different electrochemical potentials will be assigned to the electrons trav- 
elling in opposite directions as required for a circuit that carries a current. 

It will be seen from the examples presented later in this paper that a perfect battery 
can only be defined in terms of electrochemical potentials. The definition of a perfect 
battery that will be adopted in this work is that it is a device that controls the filling of 
the outgoing electron states such that the outgoing states from one terminal of the battery 
are filled to a higher energy than the outgoing states from the other terminal. The 
electrochemical potentials of the outgoing states are different at the two terminals of the 
battery and the difference between the potentials is equal to the battery voltage. 

In the examples that follow it will be assumed that a perfect battery is connected by 
perfect leads to another perfect conductor. The leads are an intrinsic part of the battery 
since it is the occupancy of the states in these leads propagating away from the battery 
that is controlled by the battery. It will be assumed that the leads and the conductor are 
made of the same material so that there are no contact potentials between them, but it 
is trivial to remove this constraint. Two-dimensional systems will be considered but the 
results could be extended to three-dimensional systems by using a three-dimensional 
density of states. Three cases will be studied: in the first the conductor'is much narrower 
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than the leads; in the second the leads and the conductor are of the same width; and in 
the final example the conductor is much wider than the leads. The leads and the 
conductor will be assumed to be much longer than their screening lengths and the spatial 
dependence of the screening will not be investigated in detail. It will be assumed that 
the electrons evolve adiabatically so that they remain in the same transverse quantum 
state throughout the system. If this is the case electrons are either wholly reflected or 
wholly transmitted at the interfaces between the leads and the conductor. This model 
for the evolution of the electronic states explains the quantised conductance observed 
in systems containing several narrow constrictions (Wharam et a1 1988a, Beenakker and 
van Houten 1989). Adiabaticevolution of the electronicstates requires that the interfaces 
between the leads and the conductor are not abrupt. Whether electrons evolve adia- 
batically or not in quantum transport devices will be investigated in detail in the following 
paper (Payne 1989). Finally, it will be assumed that the widths of the leads and the 
conductor are large enough for the density of states per unit area to be constant. The 
complications introduced when the conductor becomes very narrow and the sub-band 
structure in the density of states becomes apparent will be discussed after the first 
example. 

3. Applications 

The first case to consider is when the width of the conductor is much smaller than the 
widths of the leads. This geometry resembles that of the systems containing narrow 
constrictions that have been studied experimentally. The model for the quantised con- 
ductance presented at the beginning of the paper requires that the range of energies of 
the current-carrying states in the constriction is equal to eV, where V is the voltage 
measured between probes positioned in the leads. The validity of this assumption will 
be examined later. The complications that occur when the width of the constriction 
becomes very narrow will be briefly discussed at the end of the example. The electrostatic 
and electrochemical potentials for the system are shown in figure 1. The electrostatic 
potential is represented by the absolute energy of the bottom of the band of electronic 
states shown by the full line in the figure. The electrochemical potential for the carriers 
moving to the right is shown by the broken line and the electrochemical potential for the 
carriers moving to the left is shown by the chain line. The figure shows an abrupt interface 
between the leads and the conductor whereas adiabatic evolution of the electronic 
states requires that the width of the channel varies continuously and in this case the 
electrochemical potentials would vary smoothly in the regions where the width of the 
channel changes. Only the electrons in the range of energies between the electrochemical 
potentials p l  and p2 imposed by the battery need to be considered to determine the 
magnitude of the current because below the lower of these energies all the electronic 
states are occupied so the currents due to electrons propagating to the right and to the 
left cancel and above the higher of these energies all the electronic states are empty. 
Since the leads are much wider than the conductor there is a higher density of states in 
the leads and so most of the electrons moving to the right in the left-hand lead are 
reflected at the interface between the lead and the conductor. If w is the width of the 
conductor and Wis the width of the leads a fraction ( w / W )  of the states in the left-hand 
lead evolve adiabatically into states propagating to the right of the conductor filling all 
the right-propagating states in the conductor up to the electrochemical potential ,uI.  At 
the interface between the conductor and the right-hand lead all of these states are 
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Figure 1. The electrostatic potential, I$, and the electrochemical potentials for carriers 
moving to the right, pR, and carriers moving to the left, pL, for a system consisting of a perfect 
battery connected by perfect leads to a perfect conductor. The width of the conductor is 
smaller than that of the leads. The negative terminal of the battery is connected to the left- 
hand edge of the left-hand lead and the positive terminal of the battery is connected to the 
right-hand edge of the right-hand lead. p ,  is the electrochemical potential imposed by the 
battery on the carriers moving to the right in the left-hand lead and p 2  is the electrochemical 
potential imposed by the battery on the carriers moving to the left in the right-hand lead. 
The voltage of the battery, V ,  is equal t op ,  - p 2 .  The variation of the electrostatic potential 
in the regions around the contacts is illustrated schematically. 

perfectly transmitted into the lead. However, the density of states in the lead is larger than 
that in the conductor and so the electrochemical potential of the electrons propagating to 
the right in the right-hand lead is only p2  + (w/w>(p l  - p2).  The arguments applied to 
electrons propagating to the right can be repeated for holes propagating to the left with 
the usual inversion of the energy scale which gives the electrochemical potential for 
electrons propagating to the left shown by the chain line in figure 1. The assumption of 
adiabatic evolution of the electronic states across the interfaces between the leads and 
the conductor makes it simple to determine the electrochemical potentials in the system 
and it only remains to determine the electrostatic potential. In general the electrostatic 
potential must be determined self-consistently so that the charge density in the system, 
which depends on the electrochemical and electrostatic potentials, generates the elec- 
trostaticpotential. However, outside the regions where screening occurs the electrostatic 
potential is determined by the constraint that the system must be charge neutral. With 
the definition of the electrochemical potentials used in this paper charge neutrality 
occurs when the electrostatic potential is a constant energy below the average of the 
electrochemical potentials, so the number density of electrons is the same as that in the 
neutral material. The electrostatic potential varies smoothly between the regions of 
charge neutrality. Screening charges are generated because the electrostatic potential 
varies more slowly than the electrochemical potentials thus producing an excess of 
electrons to the left of each interface between the leads and the conductor and an excess 
of holes to the right of each interface. 

The change in the electrostatic potential between the battery terminals in this system 
is equal to (1 - w/w>(p,  - p2) which is the same as the changes in the electrochemical 
potentials for the electrons propagating to the right and to the left. The range of energies 
of the current-carrying states in the constriction is equal to e ( p ,  - p2)  which is not equal 
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to eV',  where V'  is the potential difference measured between voltage probes in the two 
leads. Hence, the assumption used in the simple model for the quantisation of the 
conductance presented at the beginning of this paper is incorrect. The measured con- 
ductance will be larger than the quantised value by a factor of (I - w / W ) - l .  The changes 
in the electrochemical and electrostatic potentials across the system become equal to the 
voltage of the battery as the ratio of the widths of the battery leads to the width of the 
conductor tends to infinity, and so an approximately quantised conductance will be 
measured if the widths of the leads are much greater than the width of the constriction. 
The changes in the potentials do not occur continuously across the system but are 
restricted to the regions around the contacts between the leads and the conductor, so 
the approximately quantised conductance will only be measured between points in the 
electrodes that are far enough from the constriction for the potentials to have reached 
their asymptotic values. In the case of a measurement of the electrostatic potential 
difference this requires that the probes are outside the screening regions. Although the 
Landauer formulae should only be used to calculate the conductance measured between 
reservoirs it can be seen that different versions of the Landauer formula can give the 
correct values for the conductances measured between different points in the system. 
Measuring the change in any potential between points well inside the conductor or inside 
a single lead gives the infinite conductance predicted by (7) while either (6) or (7) would 
give the conductance measured between points in the two leads. A conductance equal 
to twice the quantised value would be measured between the conductor and either 
lead if the voltage probes measured the average electrochemical potential of electrons 
propagating in both directions. 

The above analysis would be more difficult if the width of the constriction became 
very small. The electrochemical potentials will be as shown in figure 1 providing the 
electronic states evolve adiabatically through the system. However, the density of states 
per unit area is not constant if the constriction is verynarrow and the minimum transverse 
kinetic energy of the electrons in the channel is no longer negligible. The total charge 
density in the channel must be calculated by summing the contributions of all the 
electrons propagating in the channel. If the channel is very narrow there can only be a 
small screening charge within the channel which may be insufficient to screen the electric 
field and in this case there would be an electric field along the entire length of the channel. 

The changes in the electrostatic and electrochemical potentials across the system in 
the previous example are related to the battery voltage by a factor of 1 - w/W. This 
suggests that when the leads and the conductor have the same width, so that the terminals 
of the battery are connected by a single perfect conductor, the differences in these 
potentials should be zero. The electrostatic and electrochemical potentials in such a 
system are shown in figure 2. It can be seen that this suggestion is correct: the elec- 
trochemical and electrostatic potentials are constant throughout the system. It should 
be noted that the battery voltage is still V according to the definition adopted in this 
paper. The conductance of the system is infinite because there is no change in the 
electrostatic potential or the electrochemical potentials across the system which is in 
accordance with (7). Even though the conductance of the system is infinite the current 
flowing through the system is finite because there is no change in the electrostatic or 
electrochemical potentials across the system. A system containing a battery is very 
different from a system in which the loop integral of the electric field is non-zero such as 
particle accelerator. The current in a circuit connected to a battery can never be infinite 
because only the states in a finite energy range between the electrochemical potentials 
ofthe battery, y l  andy,, cancontribute tothecurrent. Theelectronsarenotcontinuously 
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Figure 2. As figure 1 but for a system in which the 
leads and the conductor have the same width. 

Figure 3. As figure 1 but for a system in which the 
conductor is wider than the leads. 

accelerated as they are if the integral of the electric field round the circuit is non-zero, 
in which case the current would increase with time until the rate of gain of energy from 
the electric field was equal to  the rate of loss of energy due to radiation. 

The final example to be considered is a system in which the width of the conductor, 
w, is much greater than the widths of the leads to the battery, W .  The electrochemical 
and electrostatic potentials in this system are shown in figure 3 .  All the electrons 
propagating to the right in the left-hand lead are transmitted into the conductor. 
However, the density of states in the conductor is larger than the density of states in the 
lead because the conductor is wider than the lead, so the electrochemical potential for 
the electrons propagating to the right in the conductor is only ( W / w ) ( p ,  - p 2 )  greater 
than that of the neutral conductor. The surprising feature in figure 3 is the increase of 
the electrochemical potential from the conductor to the right-hand lead for electrons 
moving to the right and similarly the increase in the electrochemical potential from the 
conductor to the left-hand lead for holes propagating to the left. In both cases the carriers 
are moving in the direction opposite to the gradients of their electrochemical potentials. 
This behaviour can be attributed to the adiabaticity of the evolution of the electronic 
states through the system. An electron propagating to the right in the left-hand lead is 
perfectly transmitted into the conductor into a state which is itself perfectly transmitted 
into the right-hand lead. This example provides a striking illustration of the limitations 
of the electrochemical potential for describing quantum transport. The distribution 
function for the electrons in the conductor would show that all the excess electrons 
propagating to the right in the conductor will be perfectly transmitted into the right- 
hand lead but the electrochemical potential does not contain this information. 

There is no change in the electrostatic potential across this system and so the con- 
ductance of the system is infinite when defined with respect to changes in the electrostatic 
potential. If the conductance of the system is defined in terms of changes in the elec- 
trochemical potentials of the carriers moving in a particular direction then a variety of 
conductances including a negative conductance can be measured between different 
points in the system. If the probe used to measure the difference between electrochemical 
potential differences does not distinguish between electrons propagating in different 
directions and simply measures the average of the two electrochemical potentials the 
conductance of the system will be measured to be infinite. 
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The examples presented in this paper have been deliberately chosen to be as simple 
as possible and all the complex features associated with screening and with the precise 
details of the coupling between the leads and the conductor have been ignored. Never- 
theless the examples give some insight into the electrochemical and electrostatic poten- 
tials that exist in systems used to investigate quantum transport phenomena and they 
illustrate under what conditions different forms of the Landauer formula describe the 
conductance of the systems. 
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